
1

E SERIES

AR model estimation and forecasting

For a given time series x we can fit the autoregressive (AR) model using

the arima() command and setting order equal to c(1, 0, 0).

Note for reference that an AR model is an ARIMA(1, 0, 0) model.

Problem 01

Instructions

 Use arima() to fit the AR model to the series x. Closely examine the output
from this command.

 What are the slope (ar1), mean (intercept), and innovation variance

(sigma^2) estimates from your previous command? Type them into your R
workspace.

 Now, fit the AR model to AirPassengers, saving the results as AR.

Use print() to display the fitted model AR.

 Finally, use the commands provided to plot the AirPassengers, calculate the
fitted values, and add them to the figure.

Fit the AR model to x

arima(___, order = ___)

Copy and paste the slope (ar1) estimate

Copy and paste the slope mean (intercept) estimate

Copy and paste the innovation variance (sigma^2) estima

te

Fit the AR model to AirPassengers

AR <-

print(AR)

Run the following commands to plot the series and fitte

d values

ts.plot(AirPassengers)

AR_fitted <- AirPassengers - residuals(AR)

points(AR_fitted, type = "l", col = 2, lty = 2)

Simple forecasts from an estimated AR model

The predict() function can be used to make forecasts from an estimated AR model.

In the object generated by your predict() command, the $pred value is the

forecast, and the $se value is the standard error for the forecast.

 LAB MANUAL:07

 MAT 3208: TIME SERIES

DATE:

https://www.rdocumentation.org/packages/stats/versions/3.3.1/topics/predict

2

To make predictions for several periods beyond the last observations, you can use

the n.ahead argument in your predict() command. This argument establishes the

forecast horizon (h), or the number of periods being forecast. The forecasts are made

recursively from 1 to h-steps ahead from the end of the observed time series.

Problem 02

 Use arima() to fit an AR model to the Nile time series. Save this as AR_fit.

 Use predict() to make a forecast for flow of the Nile in 1971.

 Use predict_AR along with $pred[1] to obtain the 1-step forecast.

 Use another call to predict() to make forecasts from 1 step ahead to 10

steps ahead (1971 to 1980). To do so, set the n.ahead command equal to 10.

 Run the pre-written code to plot your Nile data plus the forecasts and a 95%
prediction interval.

Fit an AR model to Nile

AR_fit <- arima(___, order = ___)

print(AR_fit)

Use predict() to make a 1-step forecast

predict_AR <- predict(___)

Obtain the 1-step forecast using $pred[1]

Use predict to make 1-step through 10-step forecasts

predict(___, n.ahead = ___)

Run to plot the Nile series plus the forecast and 95% p

rediction intervals

ts.plot(Nile, xlim = c(1871, 1980))

AR_forecast <- predict(AR_fit, n.ahead = 10)$pred

AR_forecast_se <- predict(AR_fit, n.ahead = 10)$se

points(AR_forecast, type = "l", col = 2)

points(AR_forecast - 2*AR_forecast_se, type = "l", col =

2, lty = 2)

points(AR_forecast + 2*AR_forecast_se, type = "l", col =

2, lty = 2)

MA model estimation and forecasting

For a given time series x we can fit the simple moving average (MA) model

using arima(..., order = c(0, 0, 1)). Note for reference that an MA model

is an ARIMA(0, 0, 1) model.

3

Problem 03

 Use arima() to fit the MA model to the series x.

 What are the slope (ma1), mean (intercept), and innovation variance

(sigma^2) estimates produced by your arima() output? Paste these into

your workspace.

 Use a similar call to arima() to fit the MA model to the Nile data. Save the

results as MA and use print() to display the output.

 Finally, use the pre-written commands to plot the Nile data and your fitted

MA values.

Fit the MA model to x

arima(___, order = ___)

Paste the slope (ma1) estimate below

Paste the slope mean (intercept) estimate below

Paste the innovation variance (sigma^2) estimate below

Fit the MA model to Nile

MA <- arima(___, order = ___)

print(MA)

Plot Nile and MA_fit

ts.plot(Nile)

MA_fit <- Nile - resid(MA)

points(MA_fit, type = "l", col = 2, lty = 2)

Simple forecasts from an estimated AR model

you can use the predict() function to make simple forecasts from your estimated

MA model. Recall that the $pred value is the forecast, while the $se value is a

standard error for that forecast, each of which is based on the fitted MA model.

Once again, to make predictions for several periods beyond the last observation you

can use the n.ahead = h argument in your call to predict(). The forecasts are

made recursively from 1 to h-steps ahead from the end of the observed time series.
However, note that except for the 1-step forecast, all forecasts from the MA model are

equal to the estimated mean (intercept).

4

Problem 04

 Use predict() to make a forecast for River Nile flow level in 1971. Store the

forecast in predict_MA.

 Use predict_MA along with $pred[1] to obtain the 1-step forecast.

 Use another call to predict() to make a forecast from 1971 through 1980. To

do so, set the n.ahead argument equal to 10.

 Run the pre-written code to plot the Nile time series plus the forecast and
95% prediction intervals.

Make a 1-step forecast based on MA

predict_MA <-

Obtain the 1-step forecast using $pred[1]

Make a 1-step through 10-step forecast based on MA

Plot the Nile series plus the forecast and 95% predicti

on intervals

ts.plot(Nile, xlim = c(1871, 1980))

MA_forecasts <- predict(MA, n.ahead = 10)$pred

MA_forecast_se <- predict(MA, n.ahead = 10)$se

points(MA_forecasts, type = "l", col = 2)

points(MA_forecasts - 2*MA_forecast_se, type = "l", col =

 2, lty = 2)

points(MA_forecasts + 2*MA_forecast_se, type = "l", col =

 2, lty = 2)

Problem 05

Exploration data

To elaborate the ARMA models we will use an inbuilt data set of R called

AirPassengers. The dataset consists of monthly totals of international airline

passengers, 1949 to 1960.

Step 01

Load the data. Then the first pre-requisite is, no prizes for guessing - the data should

be a time series data and to check that you can use function ‘is.ts()’.

5

#Loading the Data Set

data("AirPassengers")

#This tells you that the data series is in a time series format

is.ts(AirPassengers)

Step 02

Now that we know that the data is time series we should do some data exploration.

Functions print() and summary() are used to get the overview of the data. The

start() and end() functions return the time index of the first and last observations,

respectively. The time() function calculates a vector of time indices, with one

element for each time index on which the series was observed. Finally, the

frequency() function returns the number of observations per unit time.

#This will give us the structure of our data

print(AirPassengers)

#This will give us summary of our data

summary(AirPassengers)

#Starting index, end index

start(AirPassengers)

end(AirPassengers)

time(AirPassengers)

#This will print the cycle across years.

frequency(AirPassengers)

6

Step 03

It is essential to analyze the trends prior to building any kind of time series model. The

details we are interested in pertains to any kind of trend, seasonality or random

behaviour in the series. what better way to do so than visualize the Time Series.

#This will plot the time series

ts.plot(AirPassengers, xlab="Year", ylab="Number of Passengers", main="Mont

hly totals of international airline passengers, 1949-1960")

This will fit in a line

abline(reg=lm(AirPassengers~time(AirPassengers)))

Autocorrelation

It is a very powerful tool for Time series analysis. Process with auto correlation are
more predictable as compared to none.

Total Correlation Chart (also known as Auto – correlation Function / ACF) - auto

correlation defined as a function of the time lag. Autocorrelations or lagged correlations
are used to assess whether a time series is dependent on its past. For a time series x

of length n we consider the n-1 pairs of observations one time unit apart. The first such
pair is (x[2],x[1]), and the next is (x[3],x[2]). Each such pair is of the form (x[t],x[t-1])
where t is the observation index, which we vary from 2 to n in this case. The lag-1

autocorrelation of x can be estimated as the sample correlation of these (x[t], x[t-1])

pairs.

If the above doesnt make sense, luckily, the acf() command provides a shortcut.

Applying acf(…, lag.max = 1, plot = FALSE) to a series x automatically

calculates the lag-1 autocorrelation.

ACF help us determine what type of series we have, whether it is a White noise,
Random walk, Auto regressive or Moving average.

acf(AirPassengers)

Fit the AR model to AirPassengers

For a given time series x we can fit the autoregressive (AR) model using the arima()

command and setting order equal to c(1, 0, 0). Note for reference that an AR

model is an ARIMA(1, 0, 0) model.

7

#Fitting the AR Model to the time series

AR <- arima(AirPassengers, order = c(1,0,0))

print(AR)

#plotting the series along with the fitted values

ts.plot(AirPassengers)

AR_fit <- AirPassengers - residuals(AR)

points(AR_fit, type = "l", col = 2, lty = 2)

Forcasting using AR model

The predict() function can be used to make forecasts from an estimated AR model.

In the object generated by your predict() command, the $pred value is the

forceast, and the $se value is the standard error for the forceast. To make predictions

for several periods beyond the last observations, you can use the n.ahead argument

in your predict() command. This argument establishes the forecast horizon (h), or

the number of periods being forecast. The forecasts are made recursively from 1 to h-

steps ahead from the end of the observed time series.

#Using predict() to make a 1-step forecast

predict_AR <- predict(AR)

#Obtaining the 1-step forecast using $pred[1]

predict_AR$pred[1]

#ALternatively Using predict to make 1-step through 10-step forecasts

predict(AR, n.ahead = 10)

#plotting the AirPassenger series plus the forecast and 95% prediction inte

rvals

ts.plot(AirPassengers, xlim = c(1949, 1961))

AR_forecast <- predict(AR, n.ahead = 10)$pred

AR_forecast_se <- predict(AR, n.ahead = 10)$se

points(AR_forecast, type = "l", col = 2)

points(AR_forecast - 2*AR_forecast_se, type = "l", col = 2, lty = 2)

points(AR_forecast + 2*AR_forecast_se, type = "l", col = 2, lty = 2)

8

Fit the MA model to AirPassengers
We can fit the simple moving average (MA) model using arima(…, order = c(0,

0, 1)). Note for reference that an MA model is an ARIMA(0, 0, 1) model.

#Fitting the MA model to AirPassengers

MA <- arima(AirPassengers, order = c(0,0,1))

print(MA)

#plotting the series along with the MA fitted values

ts.plot(AirPassengers)

MA_fit <- AirPassengers - resid(MA)

points(MA_fit, type = "l", col = 2, lty = 2)

Forcasting using MA model

#Making a 1-step forecast based on MA

predict_MA <- predict(MA)

#Obtaining the 1-step forecast using $pred[1]

predict_MA$pred[1]

#Alternately Making a 1-step through 10-step forecast based on MA

predict(MA,n.ahead=10)

#Plotting the AIrPAssenger series plus the forecast and 95% prediction inte

rvals

ts.plot(AirPassengers, xlim = c(1949, 1961))

MA_forecasts <- predict(MA, n.ahead = 10)$pred

MA_forecast_se <- predict(MA, n.ahead = 10)$se

points(MA_forecasts, type = "l", col = 2)

points(MA_forecasts - 2*MA_forecast_se, type = "l", col = 2, lty = 2)

points(MA_forecasts + 2*MA_forecast_se, type = "l", col = 2, lty = 2)

9

Choosing AR or MA: Exploiting ACF plots

Once we have got the models ready we must answer the important question: Should
we choose AR or MA process? Goodness of fit such as an Information criterion is a
method to help us make the decision. Specifically, Akaike information criterion (AIC)
and Bayesian information criterion (BIC) are used for Time series Models.

Information Criteria is a more advanced concept but for either measure a lower value
indicates a relatively better fitting model.

While the math underlying the AIC and BIC is beyond the scope of this vignettw, for
your purposes the main idea is these indicators penalize models with more estimated
parameters, to avoid overfitting, and smaller values are preferred. All factors being
equal, a model that produces a lower AIC or BIC than another model is considered a

better fit.

Find correlation between AR_fit and MA_fit

cor(AR_fit, MA_fit)

Find AIC of AR

AIC(AR)

Find AIC of MA

AIC(MA)

Find BIC of AR

BIC(AR)

Find BIC of MA

BIC(MA)

Given the lower value of AIC and BIC in AR model, we should go with that for the

time series analysis of AirPassenger data.

