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E SERIES 

AR model estimation and forecasting 

For a given time series x we can fit the autoregressive (AR) model using 

the arima() command and setting order equal to c(1, 0, 0).  

Note for reference that an AR model is an ARIMA(1, 0, 0) model. 

Problem 01 

Instructions 

 Use arima() to fit the AR model to the series x. Closely examine the output 
from this command. 

 What are the slope (ar1), mean (intercept), and innovation variance 

(sigma^2) estimates from your previous command? Type them into your R 
workspace. 

 Now, fit the AR model to AirPassengers, saving the results as AR. 

Use print() to display the fitted model AR. 

 Finally, use the commands provided to plot the AirPassengers, calculate the 
fitted values, and add them to the figure. 

# Fit the AR model to x 

arima(___, order = ___) 

# Copy and paste the slope (ar1) estimate 

 

# Copy and paste the slope mean (intercept) estimate 

 

# Copy and paste the innovation variance (sigma^2) estima

te 

 

# Fit the AR model to AirPassengers 

AR <- 

print(AR) 

 

# Run the following commands to plot the series and fitte

d values 

ts.plot(AirPassengers) 

AR_fitted <- AirPassengers - residuals(AR) 

points(AR_fitted, type = "l", col = 2, lty = 2) 

 

Simple forecasts from an estimated AR model 

The predict() function can be used to make forecasts from an estimated AR model. 

In the object generated by your predict() command, the $pred value is the 

forecast, and the $se value is the standard error for the forecast. 
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To make predictions for several periods beyond the last observations, you can use 

the n.ahead argument in your predict() command. This argument establishes the 

forecast horizon (h), or the number of periods being forecast. The forecasts are made 

recursively from 1 to h-steps ahead from the end of the observed time series. 

  

Problem 02 

 Use arima() to fit an AR model to the Nile time series. Save this as AR_fit. 

 Use predict() to make a forecast for flow of the Nile in 1971. 

 Use predict_AR along with $pred[1] to obtain the 1-step forecast. 

 Use another call to predict() to make forecasts from 1 step ahead to 10 

steps ahead (1971 to 1980). To do so, set the n.ahead command equal to 10. 

 Run the pre-written code to plot your Nile data plus the forecasts and a 95% 
prediction interval. 

# Fit an AR model to Nile 

AR_fit <- arima(___, order  = ___) 

print(AR_fit) 

 

# Use predict() to make a 1-step forecast 

predict_AR <- predict(___) 

 

# Obtain the 1-step forecast using $pred[1] 

 

# Use predict to make 1-step through 10-step forecasts 

predict(___, n.ahead = ___) 

 

# Run to plot the Nile series plus the forecast and 95% p

rediction intervals 

ts.plot(Nile, xlim = c(1871, 1980)) 

AR_forecast <- predict(AR_fit, n.ahead = 10)$pred 

AR_forecast_se <- predict(AR_fit, n.ahead = 10)$se 

points(AR_forecast, type = "l", col = 2) 

points(AR_forecast - 2*AR_forecast_se, type = "l", col = 

2, lty = 2) 

points(AR_forecast + 2*AR_forecast_se, type = "l", col = 

2, lty = 2) 

 

MA model estimation and forecasting 

For a given time series x we can fit the simple moving average (MA) model 

using arima(..., order = c(0, 0, 1)). Note for reference that an MA model 

is an ARIMA(0, 0, 1) model. 
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Problem 03 

 Use arima() to fit the MA model to the series x. 

 What are the slope (ma1), mean (intercept), and innovation variance 

(sigma^2) estimates produced by your arima() output? Paste these into 

your workspace. 

 Use a similar call to arima() to fit the MA model to the Nile data. Save the 

results as MA and use print() to display the output. 

 Finally, use the pre-written commands to plot the Nile data and your fitted 

MA values. 

# Fit the MA model to x 

arima(___, order = ___) 

 

# Paste the slope (ma1) estimate below 

 

# Paste the slope mean (intercept) estimate below 

 

# Paste the innovation variance (sigma^2) estimate below 

 

# Fit the MA model to Nile 

MA <- arima(___, order = ___) 

print(MA) 

 

# Plot Nile and MA_fit  

ts.plot(Nile) 

MA_fit <- Nile - resid(MA) 

points(MA_fit, type = "l", col = 2, lty = 2) 

 

Simple forecasts from an estimated AR model 

you can use the predict() function to make simple forecasts from your estimated 

MA model. Recall that the $pred value is the forecast, while the $se value is a 

standard error for that forecast, each of which is based on the fitted MA model.  

Once again, to make predictions for several periods beyond the last observation you 

can use the n.ahead = h argument in your call to predict(). The forecasts are 

made recursively from 1 to h-steps ahead from the end of the observed time series. 
However, note that except for the 1-step forecast, all forecasts from the MA model are 

equal to the estimated mean (intercept). 
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Problem 04 

 Use predict() to make a forecast for River Nile flow level in 1971. Store the 

forecast in predict_MA. 

 Use predict_MA along with $pred[1] to obtain the 1-step forecast. 

 Use another call to predict() to make a forecast from 1971 through 1980. To 

do so, set the n.ahead argument equal to 10. 

 Run the pre-written code to plot the Nile time series plus the forecast and 
95% prediction intervals. 

# Make a 1-step forecast based on MA 

predict_MA <- 

 

# Obtain the 1-step forecast using $pred[1] 

 

# Make a 1-step through 10-step forecast based on MA 

 

# Plot the Nile series plus the forecast and 95% predicti

on intervals 

ts.plot(Nile, xlim = c(1871, 1980)) 

MA_forecasts <- predict(MA, n.ahead = 10)$pred 

MA_forecast_se <- predict(MA, n.ahead = 10)$se 

points(MA_forecasts, type = "l", col = 2) 

points(MA_forecasts - 2*MA_forecast_se, type = "l", col =

 2, lty = 2) 

points(MA_forecasts + 2*MA_forecast_se, type = "l", col =

 2, lty = 2) 

 

 

Problem 05 

Exploration data 

To elaborate the ARMA models we will use an inbuilt data set of R called 

AirPassengers. The dataset consists of monthly totals of international airline 

passengers, 1949 to 1960. 

Step 01 

Load the data. Then the first pre-requisite is, no prizes for guessing - the data should 

be a time series data and to check that you can use function ‘is.ts()’. 
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#Loading the Data Set 

data("AirPassengers") 

 

#This tells you that the data series is in a time series format 

is.ts(AirPassengers) 

 

Step 02 

Now that we know that the data is time series we should do some data exploration. 

Functions print() and summary() are used to get the overview of the data. The 

start() and end() functions return the time index of the first and last observations, 

respectively. The time() function calculates a vector of time indices, with one 

element for each time index on which the series was observed. Finally, the 

frequency() function returns the number of observations per unit time. 

#This will give us the structure of our data 

print(AirPassengers) 

 

#This will give us summary of our data 

summary(AirPassengers) 

 

#Starting index, end index 

start(AirPassengers) 

 

end(AirPassengers) 

 

time(AirPassengers) 

 

#This will print the cycle across years. 

frequency(AirPassengers) 
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Step 03 

It is essential to analyze the trends prior to building any kind of time series model. The 

details we are interested in pertains to any kind of trend, seasonality or random 

behaviour in the series. what better way to do so than visualize the Time Series. 

#This will plot the time series 

ts.plot(AirPassengers, xlab="Year", ylab="Number of Passengers", main="Mont

hly totals of international airline passengers, 1949-1960") 

 

# This will fit in a line 

abline(reg=lm(AirPassengers~time(AirPassengers))) 

 

Autocorrelation 

It is a very powerful tool for Time series analysis. Process with auto correlation are 
more predictable as compared to none. 

Total Correlation Chart (also known as Auto – correlation Function / ACF) - auto 

correlation defined as a function of the time lag. Autocorrelations or lagged correlations 
are used to assess whether a time series is dependent on its past. For a time series x 

of length n we consider the n-1 pairs of observations one time unit apart. The first such 
pair is (x[2],x[1]), and the next is (x[3],x[2]). Each such pair is of the form (x[t],x[t-1]) 
where t is the observation index, which we vary from 2 to n in this case. The lag-1 

autocorrelation of x can be estimated as the sample correlation of these (x[t], x[t-1]) 

pairs. 

If the above doesnt make sense, luckily, the acf() command provides a shortcut. 

Applying acf(…, lag.max = 1, plot = FALSE) to a series x automatically 

calculates the lag-1 autocorrelation. 

ACF help us determine what type of series we have, whether it is a White noise, 
Random walk, Auto regressive or Moving average. 

acf(AirPassengers) 

Fit the AR model to AirPassengers 

For a given time series x we can fit the autoregressive (AR) model using the arima() 

command and setting order equal to c(1, 0, 0). Note for reference that an AR 

model is an ARIMA(1, 0, 0) model. 
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#Fitting the AR Model to the time series 

AR <- arima(AirPassengers, order = c(1,0,0)) 

print(AR) 

#plotting the series along with the fitted values 

ts.plot(AirPassengers) 

AR_fit <- AirPassengers - residuals(AR) 

points(AR_fit, type = "l", col = 2, lty = 2) 

Forcasting using AR model 

The predict() function can be used to make forecasts from an estimated AR model. 

In the object generated by your predict() command, the $pred value is the 

forceast, and the $se value is the standard error for the forceast. To make predictions 

for several periods beyond the last observations, you can use the n.ahead argument 

in your predict() command. This argument establishes the forecast horizon (h), or 

the number of periods being forecast. The forecasts are made recursively from 1 to h-

steps ahead from the end of the observed time series. 

#Using predict() to make a 1-step forecast 

predict_AR <- predict(AR) 

 

#Obtaining the 1-step forecast using $pred[1] 

predict_AR$pred[1] 

 

#ALternatively Using predict to make 1-step through 10-step forecasts 

predict(AR, n.ahead = 10) 

 

#plotting the AirPassenger series plus the forecast and 95% prediction inte

rvals 

ts.plot(AirPassengers, xlim = c(1949, 1961)) 

AR_forecast <- predict(AR, n.ahead = 10)$pred 

AR_forecast_se <- predict(AR, n.ahead = 10)$se 

points(AR_forecast, type = "l", col = 2) 

points(AR_forecast - 2*AR_forecast_se, type = "l", col = 2, lty = 2) 

points(AR_forecast + 2*AR_forecast_se, type = "l", col = 2, lty = 2) 
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Fit the MA model to AirPassengers 
We can fit the simple moving average (MA) model using arima(…, order = c(0, 

0, 1)). Note for reference that an MA model is an ARIMA(0, 0, 1) model. 

#Fitting the MA model to AirPassengers 

MA <- arima(AirPassengers, order = c(0,0,1)) 

print(MA) 

 

#plotting the series along with the MA fitted values 

ts.plot(AirPassengers) 

MA_fit <- AirPassengers - resid(MA) 

points(MA_fit, type = "l", col = 2, lty = 2) 

Forcasting using MA model 

#Making a 1-step forecast based on MA 

predict_MA <- predict(MA) 

 

#Obtaining the 1-step forecast using $pred[1] 

predict_MA$pred[1] 

 

#Alternately Making a 1-step through 10-step forecast based on MA 

predict(MA,n.ahead=10) 

 

#Plotting the AIrPAssenger series plus the forecast and 95% prediction inte

rvals 

ts.plot(AirPassengers, xlim = c(1949, 1961)) 

MA_forecasts <- predict(MA, n.ahead = 10)$pred 

MA_forecast_se <- predict(MA, n.ahead = 10)$se 

points(MA_forecasts, type = "l", col = 2) 

points(MA_forecasts - 2*MA_forecast_se, type = "l", col = 2, lty = 2) 

points(MA_forecasts + 2*MA_forecast_se, type = "l", col = 2, lty = 2) 
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Choosing AR or MA: Exploiting ACF plots 

Once we have got the models ready we must answer the important question: Should 
we choose AR or MA process? Goodness of fit such as an Information criterion is a 
method to help us make the decision. Specifically, Akaike information criterion (AIC) 
and Bayesian information criterion (BIC) are used for Time series Models. 

Information Criteria is a more advanced concept but for either measure a lower value 
indicates a relatively better fitting model. 

While the math underlying the AIC and BIC is beyond the scope of this vignettw, for 
your purposes the main idea is these indicators penalize models with more estimated 
parameters, to avoid overfitting, and smaller values are preferred. All factors being 
equal, a model that produces a lower AIC or BIC than another model is considered a 

better fit. 

# Find correlation between AR_fit and MA_fit 

cor(AR_fit, MA_fit) 

 

# Find AIC of AR 

AIC(AR) 

 

# Find AIC of MA 

AIC(MA) 

 

# Find BIC of AR 

BIC(AR) 

 

# Find BIC of MA 

BIC(MA) 

 

Given the lower value of AIC and BIC in AR model, we should go with that for the 

time series analysis of AirPassenger data. 

 


