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COVARIANCE AND CORRELATION 

mean(stockprice): mean 

sd(stockprice): standard deviation 

cov(stockprice_A, stockprice_B):Covariance 

 

Correlation 

 standardized version of covariance 

 +1: perfectly positive linear relationship 

 -1: perfectly negative linear relationship 

 0: no linear association 

 cor(stockprice_A, stockprice_B) 

 cov(stockprice_A,stockprice_B)/ 

(sd(stockprice_A)*sd(stockprice_B)) 

 

AUTOCORRELATION 

 Autocorrelations or lagged correlations are used to assess whether a time 

series is dependent on its past.  

 For a time series x of length n we consider the n-1 pairs of observations one 

time unit apart. The first such pair is (x[2],x[1]), and the next is (x[3],x[2]). Each 

such pair is of the form (x[t],x[t-1]) where t is the observation index, which we 

vary from 2 to n in this case. The lag-1 autocorrelation of x can be estimated as 

the sample correlation of these (x[t], x[t-1]) pairs. 

 In general, we can manually create these pairs of observations. First, create 

two vectors, x_t0 and x_t1, each with length n-1, such that the rows correspond 

to (x[t], x[t-1]) pairs. Then apply the cor() function to estimate the lag-1 

autocorrelation. 

 The acf() ,Applying acf(..., lag.max = 1, plot = FALSE) to a 

series x automatically calculates the lag-1 autocorrelation. 

 The two estimates differ slightly as they use slightly different scaling in their 

calculation of sample covariance, 1/(n-1) versus 1/n. Although the latter would 

provide a biased estimate, it is preferred in time series analysis, and the 

resulting autocorrelation estimates only differ by a factor of (n-1)/n. 
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Instructions 

# Define x_t0 as x[-1] 

x_t0 <-  

# Define x_t1 as x[-n] 

x_t1 <-  

# Confirm that x_t0 and x_t1 are (x[t], x[t-1]) pairs   

head(cbind(x_t0, x_t1)) 

# Plot x_t0 and x_t1 

plot(___, ___) 

# View the correlation between x_t0 and x_t1 

cor(___, ___) 

# Use acf with x  

acf(___, lag.max = ___, plot = ___) 

# Confirm that difference factor is (n-1)/n 

cor(x_t1, x_t0) * (n-1)/n 

 

Autocorrelations can be estimated at many lags to better assess how a time series 

relates to its past. We are typically most interested in how a series relates to its most 

recent past. 

 

AUTOREGRESSIONS 
Suppose we consider the white noise series ωt of previous example as input and 

calculate the output using the second-order equation. 

xt = xt−1 − .9xt−2 + ωt 
successively for t = 1, 2, . . . , 500. 

Above equation represents a regression or prediction of the current value xt of a time 

series as a function of the past two values of the series, and, hence, the term 

autoregression is suggested for this model. A problem with startup values exists here 

because above equation also depends on the initial conditions x0 and x−1. 

 

w = rnorm(550,0,1) # 50 extra to avoid startup problems  

x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)] 

plot.ts(x, main="autoregression") 

 

PROBLEM 01 

use arima.sim to simulate 100 observations of an AR model with slopes. (x→ 0.5, 

y→0.9, z → -0.75). Then plot that simulated data and calculate the ACF for those 

three ts objects. 

# Simulate an AR model with 0.5 slope 

x <- arima.sim(model = list(ar = 0.5), n = 100) 

# Simulate an AR model with 0.9 slope 

y <-  

# Simulate an AR model with -0.75 slope 
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z <-  

# Plot your simulated data 

plot.ts(cbind(x, y, z)) 

# Calculate the ACF for x 

acf(x) 

# Calculate the ACF for y 

 

# Calculate the ACF for z 

 

Persistence and anti-persistence 

 Persistence is defined by a high correlation between an observation and its lag. 

 anti-persistence is defined by a large amount of variation between an 

observation and its lag. 

 

RANDOM WALK(RW) AND AUTOREGRESSIVE(AR) MODEL 

The random walk (RW) model is a special case of the autoregressive (AR) model, in 

which the slope parameter is equal to 1. RW model is not stationary and exhibits very 

strong persistence. Its sample autocovariance function (ACF) also decays to zero very 

slowly, meaning past values have a long lasting impact on current values. 

The slope in an AR model can range from -1 to 1. As the slope gets closer to 1, the 

model shows higher persistence, i.e., it shows higher correlation with previous values. 

Also, the higher the slope, the slower is the decay of ACF to 0. 

 

PROBLEM 02 

Compare Random Walk(RW) and Autoregressive(AR) model. 

 

PROBLEM 03 

Random walk with drift model is given by the following equation. 

xt = δ + xt−1 + wt 

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white noise (The constant 

δ is called the drift, and when δ = 0, is called simply a random walk).  

Use the following codes to generate plots for the models with δ = 0 and .2(with σw = 

1) and a straight line. Comment on the graphs you plotted. 

set.seed(154) # so you can reproduce the results  

w = rnorm(200,0,1); x = cumsum(w) # two commands in one line  

wd = w +.2; xd = cumsum(wd)  

plot.ts(xd, ylim=c(-5,55), main="random walk")  

lines(x); lines(.2*(1:200), lty="dashed") 

 

PROBLEM 04 

Use arima.sim() to simulate 200 observations from an AR model with slope 0.9. 

Save this to x. Use ts.plot() to plot x and use acf() to view its sample ACF. Now 

do the same from an AR model with slope 0.98. Save this toy. Now do the same 
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from a RW model (z), and compare the time series and sample ACFs generated by 

these three models. 

# Simulate and plot AR model with slope 0.9  

x <- arima.sim(model = ___, n = ___) 

ts.plot(___) 

acf(___) 

# Simulate and plot AR model with slope 0.98 

y <-  

ts.plot(___) 

acf(___) 

# Simulate and plot RW model 

z <-  

ts.plot(___) 

acf(___) 

 

PROBLEM 05 

Generate n = 100 observations from the autoregression xt = −.9xt−2 + wt with σw = 1, 

using the method described in previous example. Next, apply the moving average filter 

vt = (xt + xt−1 + xt−2 + xt−3)/4 to xt, the data you generated. Now plot xt as a line and 

superimpose vt as a dashed line. Comment on the behavior of xt and how applying the 

moving average filter changes that behavior. [Hints: Use v = filter(x, rep(1/4, 4), sides 

= 1) for the filter and note that the R code in problem 03 may be of help on how to add 

lines to existing plots.] 

 

   

 

 

 

 


